Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int J Pharm ; 597: 120340, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33545284

RESUMO

Biocompatible nanoparticles composed of poly(lactic-co-glycolic acid) (PLGA) are used as drug and vaccine delivery systems because of their tunability in size and sustained release of cargo molecules. While the use of toxic stabilizers such as polyvinyl alcohol (PVA) limit the utility of PLGA, stabilizer-free PLGA nanoparticles are rarely used because they can be challenging to prepare. Here, we developed a tunable, stabilizer-free PLGA nanoparticle formulation capable of encapsulating plasmid DNA and demonstrated the formation of an elastin-like polymer PLGA hybrid nanoparticle with exceptional stability and biocompatibility. A suite of PLGAs were fabricated using solvent evaporation methods and assessed for particle size and stability in water. We find that under physiological conditions (PBS at 37˚C), the most stable PLGA formulation (P4) was found to contain a greater L:G ratio (65:35), lower MW, and carboxyl terminus. Subsequent experiments determined P4 nanoparticles were as stable as those made with PVA, yet significantly less cytotoxic. Variation in particle size was achieved through altering PLGA stoichiometry while maintaining the ability to encapsulate DNA and were modified with elastin-like polymers for increased immune tolerance. Overall, a useful method for tunable, stabilizer-free PLGA nanoparticle formulation was developed for use in drug and vaccine delivery, and immune targeting.


Assuntos
Nanopartículas , Ácido Poliglicólico , Sistemas de Liberação de Medicamentos , Elastina , Ácido Láctico , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
2.
Science ; 371(6525)2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33214287

RESUMO

Neutralizing antibodies elicited by HIV-1 coevolve with viral envelope proteins (Env) in distinctive patterns, in some cases acquiring substantial breadth. We report that primary HIV-1 envelope proteins-when expressed by simian-human immunodeficiency viruses in rhesus macaques-elicited patterns of Env-antibody coevolution very similar to those in humans, including conserved immunogenetic, structural, and chemical solutions to epitope recognition and precise Env-amino acid substitutions, insertions, and deletions leading to virus persistence. The structure of one rhesus antibody, capable of neutralizing 49% of a 208-strain panel, revealed a V2 apex mode of recognition like that of human broadly neutralizing antibodies (bNAbs) PGT145 and PCT64-35S. Another rhesus antibody bound the CD4 binding site by CD4 mimicry, mirroring human bNAbs 8ANC131, CH235, and VRC01. Virus-antibody coevolution in macaques can thus recapitulate developmental features of human bNAbs, thereby guiding HIV-1 immunogen design.


Assuntos
Coevolução Biológica/imunologia , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Sítios de Ligação , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Amplamente Neutralizantes/imunologia , Antígenos CD4/imunologia , Microscopia Crioeletrônica , Epitopos/imunologia , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/genética , HIV-1/genética , Humanos , Macaca mulatta , Mimetismo Molecular/imunologia , Vírus da Imunodeficiência Símia/genética , Replicação Viral
3.
Vaccines (Basel) ; 8(2)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503232

RESUMO

Vaccinations are a crucial intervention in combating infectious diseases. The three neurotropic Alphaviruses, Eastern (EEEV), Venezuelan (VEEV), and Western (WEEV) equine encephalitis viruses, are pathogens of interest for animal health, public health, and biological defense. In both equines and humans, these viruses can cause febrile illness that may progress to encephalitis. Currently, there are no licensed treatments or vaccines available for these viruses in humans. Experimental vaccines have shown variable efficacy and may cause severe adverse effects. Here, we outline recent strategies used to generate vaccines against EEEV, VEEV, and WEEV with an emphasis on virus-vectored and plasmid DNA delivery. Despite candidate vaccines protecting against one of the three viruses, few studies have demonstrated an effective trivalent vaccine. We evaluated the potential of published vaccines to generate cross-reactive protective responses by comparing DNA vaccine sequences to a set of EEEV, VEEV, and WEEV genomes and determining the vaccine coverages of potential epitopes. Finally, we discuss future directions in the development of vaccines to combat EEEV, VEEV, and WEEV.

4.
Trends Biotechnol ; 38(1): 113-127, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31427097

RESUMO

Viral proteins evade host immune function by molecular mimicry, often achieved by short linear motifs (SLiMs) of three to ten consecutive amino acids (AAs). Motif mimicry tolerates mutations, evolves quickly to modify interactions with the host, and enables modular interactions with protein complexes. Host cells cannot easily coordinate changes to conserved motif recognition and binding interfaces under selective pressure to maintain critical signaling pathways. SLiMs offer potential for use in synthetic biology, such as better immunogens and therapies, but may also present biosecurity challenges. We survey viral uses of SLiMs to mimic host proteins, and information resources available for motif discovery. As the number of examples continues to grow, knowledge management tools are essential to help organize and compare new findings.


Assuntos
Motivos de Aminoácidos/imunologia , Proteínas Virais , Animais , Linfócitos B/imunologia , Ontologia Genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mimetismo Molecular/imunologia , Transdução de Sinais/imunologia , Biologia Sintética , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/imunologia
6.
Cell Host Microbe ; 25(1): 59-72.e8, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30629920

RESUMO

Eliciting HIV-1-specific broadly neutralizing antibodies (bNAbs) remains a challenge for vaccine development, and the potential of passively delivered bNAbs for prophylaxis and therapeutics is being explored. We used neutralization data from four large virus panels to comprehensively map viral signatures associated with bNAb sensitivity, including amino acids, hypervariable region characteristics, and clade effects across four different classes of bNAbs. The bNAb signatures defined for the variable loop 2 (V2) epitope region of HIV-1 Env were then employed to inform immunogen design in a proof-of-concept exploration of signature-based epitope targeted (SET) vaccines. V2 bNAb signature-guided mutations were introduced into Env 459C to create a trivalent vaccine, and immunization of guinea pigs with V2-SET vaccines resulted in increased breadth of NAb responses compared with Env 459C alone. These data demonstrate that bNAb signatures can be utilized to engineer HIV-1 Env vaccine immunogens capable of eliciting antibody responses with greater neutralization breadth.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Vacinas , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/uso terapêutico , Formação de Anticorpos , Modelos Animais de Doenças , Epitopos/genética , Feminino , Cobaias , Células HEK293 , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , Humanos , Imunização , Concentração Inibidora 50 , Modelos Moleculares , Mutação , Fragmentos de Peptídeos/imunologia , Ligação Proteica , Vacinação , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
7.
J Virol ; 93(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30651354

RESUMO

The goals of preclinical HIV vaccine studies in nonhuman primates are to develop and test different approaches for their ability to generate protective immunity. Here, we compared the impact of 7 different vaccine modalities, all expressing the HIV-1 1086.C clade C envelope (Env), on (i) the magnitude and durability of antigen-specific serum antibody responses and (ii) autologous and heterologous neutralizing antibody capacity. These vaccination regimens included immunization with different combinations of DNA, modified vaccinia virus Ankara (MVA), soluble gp140 protein, and different adjuvants. Serum samples collected from 130 immunized monkeys at two key time points were analyzed using the TZM-bl cell assay: at 2 weeks after the final immunization (week 40/41) and on the day of challenge (week 58). Key initial findings were that inclusion of a gp140 protein boost had a significant impact on the magnitude and durability of Env-specific IgG antibodies, and addition of 3M-052 adjuvant was associated with better neutralizing activity against the SHIV1157ipd3N4 challenge virus and a heterologous HIV-1 CRF01 Env, CNE8. We measured neutralization against a panel of 12 tier 2 Envs using a newly described computational tool to quantify serum neutralization potency by factoring in the predetermined neutralization tier of each reference Env. This analysis revealed modest neutralization breadth, with DNA/MVA immunization followed by gp140 protein boosts in 3M-052 adjuvant producing the best scores. This study highlights that protein-containing regimens provide a solid foundation for the further development of novel adjuvants and inclusion of trimeric Env immunogens that could eventually elicit a higher level of neutralizing antibody breadth.IMPORTANCE Despite much progress, we still do not have a clear understanding of how to elicit a protective neutralizing antibody response against HIV-1 through vaccination. There have been great strides in the development of envelope immunogens that mimic the virus particle, but less is known about how different vaccination modalities and adjuvants contribute to shaping the antibody response. We compared seven different vaccines that were administered to rhesus macaques and that delivered the same envelope protein through various modalities and with different adjuvants. The results demonstrate that some vaccine components are better than others at eliciting neutralizing antibodies with breadth.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Linhagem Celular , Células HEK293 , Humanos , Imunização Secundária/métodos , Imunoglobulina G/imunologia , Macaca mulatta , Primatas , Vacinação/métodos , Vaccinia virus/imunologia
8.
Cell Rep ; 25(4): 893-908.e7, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30355496

RESUMO

Densely arranged N-linked glycans shield the HIV-1 envelope (Env) trimer from antibody recognition. Strain-specific breaches in this shield (glycan holes) can be targets of vaccine-induced neutralizing antibodies that lack breadth. To understand the interplay between glycan holes and neutralization breadth in HIV-1 infection, we developed a sequence- and structure-based approach to identify glycan holes for individual Env sequences that are shielded in most M-group viruses. Applying this approach to 12 longitudinally followed individuals, we found that transmitted viruses with more intact glycan shields correlated with development of greater neutralization breadth. Within 2 years, glycan acquisition filled most glycan holes present at transmission, indicating escape from hole-targeting neutralizing antibodies. Glycan hole filling generally preceded the time to first detectable breadth, although time intervals varied across hosts. Thus, completely glycan-shielded viruses were associated with accelerated neutralization breadth development, suggesting that Env immunogens with intact glycan shields may be preferred components of AIDS vaccines.


Assuntos
Anticorpos Neutralizantes/metabolismo , HIV-1/metabolismo , Polissacarídeos/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Biologia Computacional , Sequência Conservada , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Testes de Neutralização , Polissacarídeos/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
9.
Vaccine ; 36(46): 6911-6917, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30337177

RESUMO

Zika virus (ZIKV) is a mosquito-borne flavivirus that was first discovered in 1947. Since then, outbreaks have been reported in tropical Africa, Southeast Asia, the Pacific Islands, and, in 2015, in the Americas. Since 2013, many countries have reported cases of microcephaly and other central nervous system malformation associated with ZIKV. Because the initial target population for a ZIKV vaccine is expected to be women of child-bearing age, including those who may be pregnant, it is necessary to develop safe, easily administered, and non-viral vaccines. Here, we show that a single tetrafunctional Amphiphilic Block Copolymer (ABC) delivers DNA that encodes the full natural sequence of prM-E, among other antigen designs tested, induces the highest antibody titer and neutralization activity against three divergent ZIKV isolates. Vaccination with a single tetrafunctional block copolymer delivering low dose (10 µg) DNA plasmid rapidly induces protection from detectable viremia during acute infection in mice challenged by ZIKV more than 7 months after their first vaccination and boosted 2 weeks before challenge. This use of tetrafunctional ABCs is a new approach to deliver DNA antigens against flaviviruses. The data demonstrate that DNA formulated by a tetrafunctional block copolymer rapidly elicits protective responses against multiple diverse ZIKV isolates. This represents potential for an easy-to-administer and simple to manufacture vaccine candidate against ZIKV and possibly other emerging threats to global health.


Assuntos
Portadores de Fármacos/administração & dosagem , Polímeros/administração & dosagem , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Antígenos Virais/imunologia , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos C57BL , Resultado do Tratamento , Vacinas de DNA/administração & dosagem , Vacinas Virais/administração & dosagem , Viremia/prevenção & controle , Zika virus/genética , Zika virus/imunologia
10.
Sci Transl Med ; 10(439)2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720451

RESUMO

Antiretroviral therapy (ART) can halt HIV-1 replication but fails to target the long-lived latent viral reservoir. Several pharmacological compounds have been evaluated for their ability to reverse HIV-1 latency, but none has demonstrably reduced the latent HIV-1 reservoir or affected viral rebound after the interruption of ART. We evaluated orally administered selective Toll-like receptor 7 (TLR7) agonists GS-986 and GS-9620 for their ability to induce transient viremia in rhesus macaques infected with simian immunodeficiency virus (SIV) and treated with suppressive ART. In an initial dose-escalation study, and a subsequent dose-optimization study, we found that TLR7 agonists activated multiple innate and adaptive immune cell populations in addition to inducing expression of SIV RNA. We also observed TLR7 agonist-induced reductions in SIV DNA and measured inducible virus from treated animals in ex vivo cell cultures. In a second study, after stopping ART, two of nine treated animals remained aviremic for more than 2 years, even after in vivo CD8+ T cell depletion. Moreover, adoptive transfer of cells from aviremic animals could not induce de novo infection in naïve recipient macaques. These findings suggest that TLR7 agonists may facilitate reduction of the viral reservoir in a subset of SIV-infected rhesus macaques.


Assuntos
Antirretrovirais/uso terapêutico , Antivirais/efeitos adversos , Vírus da Imunodeficiência Símia/patogenicidade , Receptor 7 Toll-Like/agonistas , Viremia/induzido quimicamente , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Macaca mulatta , Masculino , Pteridinas/efeitos adversos , Vírus da Imunodeficiência Símia/imunologia
11.
Biomolecules ; 8(2)2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748487

RESUMO

Membrane fusion proteins are responsible for viral entry into host cells—a crucial first step in viral infection. These proteins undergo large conformational changes from pre-fusion to fusion-initiation structures, and, despite differences in viral genomes and disease etiology, many fusion proteins are arranged as trimers. Structural information for both pre-fusion and fusion-initiation states is critical for understanding virus neutralization by the host immune system. In the case of Ebola virus glycoprotein (EBOV GP) and Zika virus envelope protein (ZIKV E), pre-fusion state structures have been identified experimentally, but only partial structures of fusion-initiation states have been described. While the fusion-initiation structure is in an energetically unfavorable state that is difficult to solve experimentally, the existing structural information combined with computational approaches enabled the modeling of fusion-initiation state structures of both proteins. These structural models provide an improved understanding of four different neutralizing antibodies in the prevention of viral host entry.


Assuntos
Ebolavirus/química , Proteínas do Envelope Viral/química , Internalização do Vírus , Zika virus/química , Anticorpos Antivirais/imunologia , Ebolavirus/fisiologia , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Zika virus/fisiologia
12.
J Exp Med ; 215(6): 1571-1588, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29739835

RESUMO

T follicular helper (Tfh) cells are required to develop germinal center (GC) responses and drive immunoglobulin class switch, affinity maturation, and long-term B cell memory. In this study, we characterize a recently developed vaccine platform, nucleoside-modified, purified mRNA encapsulated in lipid nanoparticles (mRNA-LNPs), that induces high levels of Tfh and GC B cells. Intradermal vaccination with nucleoside-modified mRNA-LNPs encoding various viral surface antigens elicited polyfunctional, antigen-specific, CD4+ T cell responses and potent neutralizing antibody responses in mice and nonhuman primates. Importantly, the strong antigen-specific Tfh cell response and high numbers of GC B cells and plasma cells were associated with long-lived and high-affinity neutralizing antibodies and durable protection. Comparative studies demonstrated that nucleoside-modified mRNA-LNP vaccines outperformed adjuvanted protein and inactivated virus vaccines and pathogen infection. The incorporation of noninflammatory, modified nucleosides in the mRNA is required for the production of large amounts of antigen and for robust immune responses.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/citologia , Nucleosídeos/metabolismo , RNA Mensageiro/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Antígenos/metabolismo , Lipídeos/química , Macaca mulatta , Nanopartículas/química , Subunidades Proteicas/metabolismo , Fatores de Tempo , Vacinação
13.
Nat Commun ; 9(1): 1928, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29765018

RESUMO

Recombination in HIV-1 is well documented, but its importance in the low-diversity setting of within-host diversification is less understood. Here we develop a novel computational tool (RAPR (Recombination Analysis PRogram)) to enable a detailed view of in vivo viral recombination during early infection, and we apply it to near-full-length HIV-1 genome sequences from longitudinal samples. Recombinant genomes rapidly replace transmitted/founder (T/F) lineages, with a median half-time of 27 days, increasing the genetic complexity of the viral population. We identify recombination hot and cold spots that differ from those observed in inter-subtype recombinants. Furthermore, RAPR analysis of longitudinal samples from an individual with well-characterized neutralizing antibody responses shows that recombination helps carry forward resistance-conferring mutations in the diversifying quasispecies. These findings provide insight into molecular mechanisms by which viral recombination contributes to HIV-1 persistence and immunopathogenesis and have implications for studies of HIV transmission and evolution in vivo.


Assuntos
Evolução Molecular , Infecções por HIV/virologia , HIV-1/genética , Recombinação Genética , Variação Genética , Genótipo , HIV-1/classificação , HIV-1/isolamento & purificação , Humanos , Estudos Longitudinais , Masculino , Filogenia
14.
Front Immunol ; 9: 395, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29568296

RESUMO

Because of its great potential for diversity, the immunoglobulin heavy-chain complementarity-determining region 3 (HCDR3) is taken as an antibody molecule's most important component in conferring binding activity and specificity. For this reason, HCDR3s have been used as unique identifiers to investigate adaptive immune responses in vivo and to characterize in vitro selection outputs where display systems were employed. Here, we show that many different HCDR3s can be identified within a target-specific antibody population after in vitro selection. For each identified HCDR3, a number of different antibodies bearing differences elsewhere can be found. In such selected populations, all antibodies with the same HCDR3 recognize the target, albeit at different affinities. In contrast, within unselected populations, the majority of antibodies with the same HCDR3 sequence do not bind the target. In one HCDR3 examined in depth, all target-specific antibodies were derived from the same VDJ rearrangement, while non-binding antibodies with the same HCDR3 were derived from many different V and D gene rearrangements. Careful examination of previously published in vivo datasets reveals that HCDR3s shared between, and within, different individuals can also originate from rearrangements of different V and D genes, with up to 26 different rearrangements yielding the same identical HCDR3 sequence. On the basis of these observations, we conclude that the same HCDR3 can be generated by many different rearrangements, but that specific target binding is an outcome of unique rearrangements and VL pairing: the HCDR3 is necessary, albeit insufficient, for specific antibody binding.


Assuntos
Diversidade de Anticorpos , Regiões Determinantes de Complementaridade/genética , Cadeias Pesadas de Imunoglobulinas/química , Anticorpos de Cadeia Única/genética , Sequência de Aminoácidos , Antígenos/imunologia , Seleção Clonal Mediada por Antígeno , Quinase 2 Dependente de Ciclina/imunologia , Conjuntos de Dados como Assunto , Rearranjo Gênico , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Biblioteca de Peptídeos , Ligação Proteica , Relação Estrutura-Atividade
15.
J Virol ; 92(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29386288

RESUMO

Induction of broadly cross-reactive antiviral humoral responses with the capacity to target globally diverse circulating strains is a key goal for HIV-1 immunogen design. A major gap in the field is the identification of diverse HIV-1 envelope antigens to evaluate vaccine regimens for binding antibody breadth. In this study, we define unique antigen panels to map HIV-1 vaccine-elicited antibody breadth and durability. Diverse HIV-1 envelope glycoproteins were selected based on genetic and geographic diversity to cover the global epidemic, with a focus on sexually acquired transmitted/founder viruses with a tier 2 neutralization phenotype. Unique antigenicity was determined by nonredundancy (Spearman correlation), and antigens were clustered using partitioning around medoids (PAM) to identify antigen diversity. Cross-validation demonstrated that the PAM method was better than selection by reactivity and random selection. Analysis of vaccine-elicited V1V2 binding antibody in longitudinal samples from the RV144 clinical trial revealed the striking heterogeneity among individual vaccinees in maintaining durable responses. These data support the idea that a major goal for vaccine development is to improve antibody levels, breadth, and durability at the population level. Elucidating the level and durability of vaccine-elicited binding antibody breadth needed for protection is critical for the development of a globally efficacious HIV vaccine.IMPORTANCE The path toward an efficacious HIV-1 vaccine will require characterization of vaccine-induced immunity that can recognize and target the highly genetically diverse virus envelope glycoproteins. Antibodies that target the envelope glycoproteins, including diverse sequences within the first and second hypervariable regions (V1V2) of gp120, were identified as correlates of risk for the one partially efficacious HIV-1 vaccine. To build upon this discovery, we experimentally and computationally evaluated humoral responses to define envelope glycoproteins representative of the antigenic diversity of HIV globally. These diverse envelope antigens distinguished binding antibody breadth and durability among vaccine candidates, thus providing insights for advancing the most promising HIV-1 vaccine candidates.


Assuntos
Vacinas contra a AIDS/imunologia , Variação Genética/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Vacinas contra a AIDS/genética , Animais , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/genética , HIV-1/genética , Humanos , Macaca mulatta
16.
Elife ; 72018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29350181

RESUMO

HIV-1 Envelope (Env) variants are grouped into tiers by their neutralization-sensitivity phenotype. This helped to recognize that tier 1 neutralization responses can be elicited readily, but do not protect against new infections. Tier 3 viruses are the least sensitive to neutralization. Because most circulating viruses are tier 2, vaccines that elicit neutralization responses against them are needed. While tier classification is widely used for viruses, a way to rate serum or antibody neutralization responses in comparable terms is needed. Logistic regression of neutralization outcomes summarizes serum or antibody potency on a continuous, tier-like scale. It also tests significance of the neutralization score, to indicate cases where serum response does not depend on virus tiers. The method can standardize results from different virus panels, and could lead to high-throughput assays, which evaluate a single serum dilution, rather than a dilution series, for more efficient use of limited resources to screen samples from vaccinees.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Anti-HIV/sangue , Infecções por HIV/imunologia , HIV-1/imunologia , Testes de Neutralização/métodos , Testes de Neutralização/normas , Soro/imunologia , Humanos
19.
J Virol ; 91(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28747500

RESUMO

In the search for effective immunologic interventions to prevent and treat HIV-1 infection, standardized reference reagents are a cost-effective way to maintain robustness and reproducibility among immunological assays. To support planned and ongoing studies where clade C predominates, here we describe three virus panels, chosen from 200 well-characterized clade C envelope (Env)-pseudotyped viruses from early infection. All 200 Envs were expressed as a single round of replication pseudoviruses and were tested to quantify neutralization titers by 16 broadly neutralizing antibodies (bnAbs) and sera from 30 subjects with chronic clade C infections. We selected large panels of 50 and 100 Envs either to characterize cross-reactive breadth for sera identified as having potent neutralization activity based on initial screening or to evaluate neutralization magnitude-breadth distributions of newly isolated antibodies. We identified these panels by downselection after hierarchical clustering of bnAb neutralization titers. The resulting panels represent the diversity of neutralization profiles throughout the range of virus sensitivities identified in the original panel of 200 viruses. A small 12-Env panel was chosen to screen sera from vaccine trials or natural-infection studies for neutralization responses. We considered panels selected by previously described methods but favored a computationally informed method that enabled selection of viruses representing diverse neutralization sensitivity patterns, given that we do not a priori know what the neutralization-response profile of vaccine sera will be relative to that of sera from infected individuals. The resulting 12-Env panel complements existing panels. Use of standardized panels enables direct comparisons of data from different trials and study sites testing HIV-1 clade C-specific products.IMPORTANCE HIV-1 group M includes nine clades and many recombinants. Clade C is the most common lineage, responsible for roughly half of current HIV-1 infections, and is a focus for vaccine design and testing. Standard reference reagents, particularly virus panels to study neutralization by antibodies, are crucial for developing cost-effective and yet rigorous and reproducible assays against diverse examples of this variable virus. We developed clade C-specific panels for use as standardized reagents to monitor complex polyclonal sera for neutralization activity and to characterize the potency and breadth of cross-reactive neutralization by monoclonal antibodies, whether engineered or isolated from infected individuals. We chose from 200 southern African, clade C envelope-pseudotyped viruses with neutralization titers against 16 broadly neutralizing antibodies and 30 sera from chronic clade C infections. We selected panels to represent the diversity of bnAb neutralization profiles and Env neutralization sensitivities. Use of standard virus panels can facilitate comparison of results across studies and sites.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Testes de Neutralização/métodos , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/terapia , HIV-1/classificação , HIV-1/genética , Humanos
20.
Sci Transl Med ; 9(381)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28298420

RESUMO

A preventive HIV-1 vaccine should induce HIV-1-specific broadly neutralizing antibodies (bnAbs). However, bnAbs generally require high levels of somatic hypermutation (SHM) to acquire breadth, and current vaccine strategies have not been successful in inducing bnAbs. Because bnAbs directed against a glycosylated site adjacent to the third variable loop (V3) of the HIV-1 envelope protein require limited SHM, the V3-glycan epitope is an attractive vaccine target. By studying the cooperation among multiple V3-glycan B cell lineages and their coevolution with autologous virus throughout 5 years of infection, we identify key events in the ontogeny of a V3-glycan bnAb. Two autologous neutralizing antibody lineages selected for virus escape mutations and consequently allowed initiation and affinity maturation of a V3-glycan bnAb lineage. The nucleotide substitution required to initiate the bnAb lineage occurred at a low-probability site for activation-induced cytidine deaminase activity. Cooperation of B cell lineages and an improbable mutation critical for bnAb activity defined the necessary events leading to breadth in this V3-glycan bnAb lineage. These findings may, in part, explain why initiation of V3-glycan bnAbs is rare, and suggest an immunization strategy for inducing similar V3-glycan bnAbs.


Assuntos
Anticorpos Neutralizantes/metabolismo , HIV-1/imunologia , Polissacarídeos/metabolismo , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Cristalografia por Raios X , Humanos , Masculino , Mutação/genética , Testes de Neutralização , Filogenia , Ligação Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...